
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--02-8635

A Detection Study of an
NRL Steganographic Method

IRA S. MOSKOWTZ

Centerfor High Assurance Computer Systems
Information Technology Division

NEIL F. JOHNSON

MICHAEL JACOBS

Centerfor Secure Information Systems
George Mason University
Fairfax, VA

August 16, 2002

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE FOMB Npo. 70e08

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 16, 2002

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Detection Study of an NRL Steganographic Method WU - 55-8189-02

6. AUTHOR(S)

Ira S. Moskowitz, Neil F Johnson,*t and Michael Jacobst

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
4555 Overlook Avenue, SW NRL/MRI5540--02-8635
Washington, DC 20375-5320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

*Currently with Booz Allen Hamilton National Security Team, McLean, VA
tCenter for Secure Information Systems, George Mason University, Fairfax, VA 22030

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

In this report we analyze in detail a method of image steganography developed by NRL. Our conclusion is that this method of
steganography is undetectable by current pragmatic statistical stego detection techniques, primarily because it alters a very small
number of pixels. The small size of the embedded message is the key to the lack of detection, provided that a non-anomalous cover
image is used.

14. SUBJECT TERMS 15. NUMBER OF PAGES
28

Information hiding Steganalysis 28
Steganography TIFF 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITYCLASSIFICATION 20. LIMITATIONOFABSTRACT
OF REPORT OF THIS PAGE OFABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

1

CONTENTS

1 Introduction .. 1

2 Steganography .. 1

2.1 Kurak & McHugh ... 3
2.2 NRL Method ... 3

3 Methodology.. .4

3.1 Assumptions and Constraints ... 4
3.2 Detecting a Steganography Signature-General Approach 5

4 TIFF Files 8

4.1 Structure of a TIFF File ... 8

5 Experimental Results ... 21

6 Conclusion .. 25

Acknowledgments... .. 25
References.. .. 25

iii

A Detection Study of an NRL Steganographic Method

1 Introduction

We report on the steganalysis of a stego algorithm developed by the Naval Research
Laboratory (NRL), called the NRL method. The steganalysis was done by the Center for
Secure Information Systems (CSIS) at George Mason University (GMU). NRL provided
CSIS with images, which they then analyzed. CSIS was not able to determine if an image
was a "clean" cover image, or a "suspect" stego image. The NRL method is a variant of
the well-known least significant bit (LSB) hiding technique [3]. The NRL method is not
robust against compression, nor in its elementary form is it robust against noise. The
NRL method is used to demonstrate that a small enough embedded message can be
hidden, without the steganography being detected.

The steganalysis performed by CSIS is based on investigative techniques being
developed at CSIS for targeting open-source and commercial steganography software
tools and algorithms. This task involves investigating techniques employed for
steganography and the resulting stego media to determine if any stego signatures can be
readily detected.' We also use this report to showcase some statistical stego detection
techniques developed by CSIS.

2 Steganography

We give a brief description of still image-based steganography. The cover image is the
image in which we do the hiding. The embedded message is what we hide, via the
(steganographic or) stego algorithm or method. Note that the embedded message need
not be an image. In fact, in the NRL method the message is ASCII text (including the
Unix line feed "Oa"). The stego image is the cover image with the embedded image "in
it." The extracted message is what we extract from the stego image by reversing the
stego algorithm. The extracted message need not be exactly the same as the embedded
image. The acceptable quality level depends on the usage and data type [5]. For the NRL
method, no errors are tolerated (the NRL method can be modified, by using error
correcting codes, to deal with loss of fidelity). Also, the stego method may or may not
use a "key," referred to as the stego key.

The NRL method discussed here uses a stego key. For key based steganography, the
steganography should not be detectable without the key. Recall that in steganography the
thrust is to keep hidden the very existence of the embedded message. Once an
eavesdropper knows that there is a hidden message, the steganography has failed. Of
course, by only embedding encrypted messages, one could make the hidden message
unintelligible to the eavesdropper. However, that is an issue of cryptography --- the
steganography is still considered to have failed.

1 Stego signature - Steganography media signatures include characteristics or patterns
introduced to carrier media based on the impact of using steganography techniques to
hide information in digital media.
Manuscript approved July 19, 2002.

I

Stcgo key

I

covet image ---.-

StegO idmse

tgo image

cnbore (hikdeh) icnage

Figure 2.1: Forward Stego Algorithm

stcgo key

I'

cxtraztod (hidden) arrsagc

Figure 2.2: Reverse Stego Algorithm

We stress that a stego key is not necessary. This may seem to go against the nature of
Kerchoffs' principle [1], which is a mainstay of cryptography. If one wishes to determine
whether a given image is a stego image or not, and they have knowledge of the stego
algorithm, then the determination is trivial. However, steganography differs from
cryptography in that we might be attempting to determine which images are stego images
from a set of millions of images (such as image postings on the Web, or on USENET
BBDs). In that case, even with knowledge of the stego algorithm, the task is still
daunting.

2

(fotwatd) stegahogtaphic aLgotithi|

(thvetse) stcgarhographicv aIStithi

2.1 Kurak & McHugh
One of the simplest methods of image-based steganography is that of swapping the least
significant bits (LSBs) of the cover image, with the most significant bits (MSBs) of the
embedded message. This method is discussed in detail in [3].

2.2 NRL Method
The Kurak & McHugh method of steganography is easily detectable because entire bit
planes have been swapped. The NRL method hides much less data, but is also much less
detectable. The NRL method hides a maximum of 249 ASCII characters in either a
greyscale or a color image (a spatially realized TIFF file) that have minimum dimensions
of 500 x 500. A stego key is randomly generated of length 1000. The key is made up of
1000 unique tuples, where each tuple is of the form (xi,yj) where both x and yj are
integers in the range 0 to 499. (Thus, one sees why both the horizontal and vertical
dimensions of the image must be at least 500.) The stego key gives us 1000 image
coordinates in terms of pixel values. We used the "xv" software for our image
processing. For an M x N image in xv, the x values run from left to right (to M-1), and
the y values run from top to bottom (to N-1). We only deal with a spatially realized
image, so we are using the bitmap representation. We save our files in uncompressed
TIFF format.

Given an ASCII character we break it up into four 2-bit pairs as follows: if the ASCII
characters byte representation is (b1,b2,b3,b4 ,b5,b6,b7 ,b8), where each bi is a bit, we break
it up into (b1,b2), (b3,b4), (b5,b6), (b7,b8). Our embedded message has a maximum length
of 249. We always append a stop signal to the information carrying part of the message.
The stop signal is the four 2-bit pairs (0,O), (0,O), (0,O), (0,O). In other words, the stop
sequence is the four 2-bit pair decomposition of the null symbol. A pixel coordinate
(xi,yj) has an RGB value (Rij ,Bij ,Gij). Of course if the image is greyscale all three
colors have the same value. Each color value is given by a byte (i.e., an integer 0 to 255).

We concentrate our effort on the red value Rij. We swap the two least significant bits
(LSBs) of Rij with a two bit pair from an ASCII character if the image is color, and we
swap every color's two LSBs if the image is greyscale. The stego key tells us what order
to change the pixels in for the stego embedding, and how to read them out for the stego
extraction. We treat color and greyscale differently because for a greyscale the three
colors must all have the same value or else the steganography will be obvious. For a color
image we only change the red value to minimize the changes to the cover image with the
intent of making the steganography as hidden as possible. The algorithm is as follows.

1-Take an ordered ASCII text message up to 249 characters.

2-Break each character up into four ordered 2-bit pairs as discussed above. Thus, we now
have an ordered message of up to 996 2-bit pairs.

3-For the first tuple in the stego key replace the two LSBs of the red (all colors) byte of
that pixel with the first 2-bit pair from the ordered message if the image is color
(greyscale). For the second tuple in the stego key, replace the two LSBs of the

3

corresponding pixel byte value(s) with the next two bit pair, the same for the third and
fourth tuples from the stego key. At this point we have embedded the first ASCII
character into the cover image. If there is a second ASCII character we use the fifth tuple
from the stego key. We keep doing this until all the n ASCII (n <250) characters have
been embedded into the cover image.

4-Once this is done we use the 4n+1, 4n+2, 4n+3, and 4n+4 tuple coordinates to embed
the null sequence into the cover image in the same manner as above.

We have now replaced the cover image with the stego image. The stego image has at
most a difference of 1000 pixel values with that of the cover image. That is no more than
0.4% of the pixels have been changed, and if the pixel has been changed it is only in the 2
LSBs. The differences are only in the 2 LSBs of the red byte (all color's bytes) value if
the image is color (greyscale). These changes are not noticeable to the human visual
system (HVS) for a "good" cover image.2 For any steganographic method one should
only use "good" cover images.

The stego extraction simply reverses the processes, extracting each ASCII character out
in four 2-bit pairs. The stego key indicates which pixels to compose the characters from
and in what order to do it. When the extraction process reaches the null character the
extraction is complete and the extracted message is the same as the embedded message.

We contend that it is extremely difficult to detect this NRL method of steganography.
The remainder of this report backs that claim.

3 Methodology
This section describes the approach taken in reviewing the media provided by NRL by
CSIS.

3.1 Assumptions and Constraints

A study of the steganography described above was done to determine if the NRL
method has characteristics that produce detectable signatures. The following
assumptions and constraints apply:

* The steganography tool used to create the stego image was not made available to
CSIS for analysis or to produce known cover/stego media pairs for analysis.
Therefore, the analysis performed by CSIS was limited to the images (the carrier
images) provided by NRL for investigation. CSIS was tasked to determine which
images were in fact stego images and which were benign cover images.

* However, after the initial testing the method (not the tool itself) was revealed to CSIS,
but the NRL method could still not be detected. Of course CSIS was not given cover
image-stego image pairs. In other words CSIS was tasked to perform blind detection.
Neither was CSIS given the stego keys. This would be the best that an informed
eavesdropper could hope for.

2 A "bad" or anomalous cover image would be one, for example, that is all black.

4

3.2 Detecting a Steganography Signature---General Approach

Identifying steganography signatures is based on assessing combinations of carrier, stego
media, embedded message, and steganography tools known by the analyst. One must
look for characteristics or patterns based on the impact the steganography tools have on
the digital media used to hide information. These characteristics may be used to identify
the use of steganography in a system and to identify the modified media. This portion of
the analysis involves identifying recurring characteristics or patterns produced by the
steganography software and is one of the most time consuming activities.

The steps typically used by CSIS to analyze existing steganography tools includes:
1. Obtaining a collection of carriers without information embedded within them (we

will call this the set of original carriers).3

2. Hiding information in the various carriers using a steganography tool to produce
stego media files (this is the set of original carriers that now contain hidden
information).

3. Performing a number of tests against the stego media to determine if a pattern can
be detected.

Since the tools used to hide information may not be available, step 2 above may not be
viable. The objective of analyzing the stego media is to find a pattern that can be
detected without requiring an original for inspection.4 At this point our options for
determining signatures involve visual inspection and determining if statistical anomalies
exist.

Identifying Steganography Signature

Identifying steganography signatures is based on assessing combinations of carrier, stego
media, embedded message, and steganography tools known by the analyst. In this
experiment, only the stego media is provided for evaluation. Discovering signatures in
stego media relies on other understanding the analysts have with respect to tools and
techniques for hiding information as well as the associated stego signatures.

In making comparisons with numerous images, patterns begin to emerge as possible
signatures of steganography software. Some of these signatures may be exploited
automatically to identify the existence of hidden messages and even the tools used to
embed the messages. With this knowledge base, if the cover images are not available for
comparison (as in the NRL tests), the derived known signatures are enough to imply the
existence of a message and identify the tool used to embed the message.

The approaches used in analyzing the images provided by NRL are visual inspection and
statistical analysis. In some cases these techniques can be employed to identify the tools
used to hide information, in other cases, these detection techniques may simply be used to
identify suspicious characteristics. The following 16 images were provided by NRL.

3 For the most part the carriers focused on in the past were images.
4 Also known as blind detection.

5

Figure 3.2: test2.tif

Image not shown

Figure 3.4: test4.tif

Figure 3.7: test7.tif

Figure 3.5: test5.tif

Figure 3.8: test8.tif

Figure 3.6: test6.tif

Figure 3.9: test9.tif

6

Figure 31: testl.tif Figure 3.3: testltif

,�i

. rl.

lp'-� 7-: �/

rl..,�'.
. . ry -,� �'!

Image not shown

Figure 3.10: testlO.tif Figure 3.11: testll.tif Figure 3.12: testl2.tif

V~~~~~~~~~~I

Figure 3.13: testl3.tif Figure 3.14: testl4.tif Figure 3.15: testl5.tif

Figure 3.16: testl6.tif

NRL Images

7

The above sixteen TiFF format images in Figure 3.1 through Figure 3.16 were provided
by NRL for steganalysis. These images are 24-bit TIFF images with dimensions 500
pixels in width by 500 pixels in height with the following exceptions:

test8.tif - 792 pixels in width by 528 pixels in height
testi 1 .tif - 720 pixels in width by 576 pixels in height
test12.tif - 776 pixels in width by 552 pixels in height
testl5.tif- 576 pixels in width by 720 pixels in height

4 TIFF Files

The images files provided by NRL were all TIFF. No compression was used when
saving the images in TIFF format to assure that the lower bits were not over written. This
section describes the structural elements of a TIFF file using the image in Figure 3.2 as
an example. In this section we will be looking at the digital and hexadecimal
representation of the image in Figure 3.2: test2.tif.

F e ., .
Figure 3.2: test2.tif

4.1 Structure of a TIFF File

A TIFF file always begins with either ll*[NULL] or MM[N1TLL]* followed by a 32-bit
value that is the offset position for the image file directory (ID), which contains
information about the image such as height, width, depth, number of color planes, and
type of data compression.5 No compression was used in the test images. The header for
the data in Figure 4.17 begins at offset 00 and ends with the byte at offset 07. The 1FD
offset position is identified as OB71B8 by the last four bytes of the file header.

5 Though translated ASCII data differs for some characters between UNIX, Windows, and DOS
environments, the Hexadecimal Data (or actual binary values) remain the same. The ASCII data presented
in the figures illustrating the HEX Dump data of the TIFF files are for DOS systems.

8

OFFSET Hexadecimal Data ASCII Data
00000000: 4D 4D 00 2A 00 OB 71 B8 6F 67 57 53 4F 3F 5B 5B M * qogWSO?[[
00000010: 4B 47 3B 37 53 4B 3F 4B 3F 3F 4F 4F 4B 63 5F 5B KG;7SK?K??OOKc_[
00000020: 6B 63 5F 6B 6F 6B 7F 87 83 7F 83 7B 77 7B 7B 77 kc-kokbgaoafw{{w
00000030: 77 6F 73 6F 6B 6B 5B 53 6B 57 53 6F 67 57 67 57 wosokk[SkWSogWgW
00000040: 3B 73 4F 3F 63 57 47 6B 5F 57 77 73 6B 77 6F 67 ;sO?cWGkWwskwog
00000050: 8B 87 77 8B 7F 6B 6B 73 5B 7F 67 57 6F 6F 57 6B !qwIkks[0gWooWk
00000060: 5B 4F 6B 67 5B 8B 97 7F 3F 43 3F 6B 5B 5F 7F 67 [Okg iCiO?C?k[-Og
00000070: 6B 7F 5B 5B 93 73 47 97 7B 47 6F 6F 4A 6B 67 5E ko[[sGu(Goodkg'
00000080: 5F 56 52 67 66 6A 5B 4F 56 6B 5F 63 5B 46 5SA 6A _VRgfj[OVk.c[FZj
00000090: 61 65 49 5D 51 35 39 41 61 60 5C 41 40 3C 35 34 aeI]Q59Aa'\A@<54
OOOOOOAO: 40 3D 38 38 49 3C 39 4D 34 38 49 38 38 3D 3C 38 i=88I<9M48I88=<8
OO00OOBO: 45 40 34 45 40 38 45 40 3C 45 44 38 41 3C 38 45 E@4E@8E@<ED8A<SE

Figure 4.17: Hex Dump of test2.tif (first 192 bytes)

The 1FD begins at offset B71B8 (or at the 750,008'h byte of the file). In the image
test2.tif (Figure 3.2) the IFD follows the image raster data (raster data is "what you see"
on the screen. It is the data values that actually produce the visible image).

Offset Hexadecimal Data ASCII Data
00OB71BO: 43 3F 63 47 43 5B 4F 47 00 OF 01 00 00 03 00 00 C?cGC[OG *i V
00OB71CO: 00 01 01 F4 00 00 01 01 00 03 00 00 00 01 01 F4 o3f o V of

00OB71DO: 00 00 01 02 00 03 00 00 00 03 00 OB 72 72 01 03 e If oerrOT
00OB71EO: 00 03 00 00 00 01 00 01 00 00 01 06 00 03 00 00 V © Q 04
00OB71FO: 00 01 00 02 00 00 01 OE 00 02 00 00 00 07 00 OB © * 04 P .
000B7200: 72 78 01 11 00 04 00 00 00 01 00 00 00 08 01 i2 rx©4 * © ©O:
000B7210: 00 03 00 00 00 01 00 01 00 00 01 15 00 03 00 00 V © © ©§ V

000B7220: 00 01 00 03 00 00 01 16 00 03 00 00 00 01 01 F4 V 0- I cof
000B7230: 00 00 01 17 00 04 00 00 00 01 00 OB 71 B0 01 1A © 0 * © dgq.:_
000B7240: 00 05 00 00 00 01 00 OB | 72 80 01 1B 00 05 00 00 * © d rQ.-. 4
000B7250: 00 01 00 OB 72 88 01 1C 00 03 00 00 00 01 00 01 0 KrdaL 0 ©
000B7260: 00 00 01 28 00 03 00 00 00 01 00 02 00 00 00 00 ©(0@
000B7270: 00 00 00 08 00 08 00 08 57 41 4E 47 5A 02 00 00 a a WANGZ@
000B7280: 12 CO 00 00 00 04 00 00 12 CO 00 00 00 04 00 00 IL + IL

Figure 4.18: Hex Dump of the Image File Directory (IFD) from the end of image test2.tif in Figure 3.2

In this image, fifteen fields (or tags) are used to further define the IFD. These fields are
color coded in the HEX data of Figure 4.18 and their corresponding data types and
descriptions follows:

Tag 1 01 00 00 03 00 00 00 01 01 F4 00 00
Width, Short Data Type (16-bit unsigned integer), One Data Item, Width= Hex
01F4 = 500 pixels

Tag 2 01 01 00 03 00 00 00 01 01 F4 00 00
Height, Short Data Type (16-bit unsigned integer), One Data Item, Height= Hex
01F4 = 500 pixels

Tag 3 01 02 00 03 00 00 00 03 00 OB 72 72
Bits Per Sample, Short Data Type (16-bit unsigned integer), Three Data Items,
Offset=00 0B 72 72 points to the Hex values 00 08 00 08 00 08 which means the
image use three samples of 8-bits each.

Tag 4 01 03 00 03 00 00 00 01 00 01 00 00

Compression, Short Data Type (16-bit unsigned integer), One Data Item,
Compression Type=1 (no compression)

9

Tag 5 01 06 00 03 00 00 00 01 00 02 00 00
Photometric Interpretation, Short Data Type (16-bit unsigned integer), One Data
Item, Value=2 meaning that the image is RGB

Tag 6 01 OE 00 02 00 00 00 07 00 OB 72 78
Image Description, ASCII Data Type (8-bit NULL-terminated string), Seven Data
Items.

Tag 7 01 11 00 04 00 00 00 01 00 00 00 08
Strip Offsets, Long Data Type (32-bit unsigned integer), One Data Item having
value of 8.means that the image Raster Data begins at offset 8 in the image
file. This is the position of the Red channel in the first pixel of an
uncompressed RGB TIFF. Also, because there is only one data item (instead of
an array of strip offsets) we know that there is only one strip of raster data
in this image file.

Tag 8 01 12 00 03 00 00 00 01 00 01 00 00
Orientation, Short Data Type (16-bit unsigned integer), One Data Item with
value of 1 meaning that the start of raster data corresponds to the upper left
corner of the image.

Tag 9 01 15 00 03 00 00 00 01 00 03 00 00
Samples Per Pixel, Short Data Type (16-bit unsigned integer), One Data Item
with value of 3 meaning that three samples are used per pixel. In Tag 3 above
each sample is defined as having 8-bits.

Tag 10 01 16 00 03 00 00 00 01 01 F4 00 00
Rows Per Strip, Short Data Type (16-bit unsigned integer), One Data Item with
value of 500 meaning that strips have 500 rows each. Because we know from Tag
2 that the height is 500 pixels, we know that there is only one strip of raster
data.

Tag 11 01 17 00 04 00 00 00 01 00 OB 71 BO
Strip Byte Counts, Long Data Type (32-bit unsigned integer), One Data Item with
value 750,000 meaning that the single strip of raster data uses 750,000 bytes.
This is expected because the width of 500 and height of 500 yields 250,000
pixels, with each pixel requiring 3 bytes, requiring a total of 750,000 bytes
in TIFF file that uses no compression.

Tag 12 01 A 00 05 00 00 00 01 00 B 72 80
XResolution, Rational Data Type (Two 32-bit unsigned integers), One Data Item
pointing to the position 00 OB 72 80 in the file. At this position the
numerator is Hex 12 CO 00 00 and the denominator is Hex 00 04 00 00, giving a
rational number of Hex 04 BO or 1200 decimal. This means that there are 1200
pixels per resolution unit (see tag 15) in X coordinate space.

Tag 13 01 B 00 05 00 00 00 01 00 0 7 88
YResolution, Rational Data Type (Two 32-bit unsigned integers), One Data Item
pointing to the position 00 O 72 88 in the file. At this position the

numerator is Hex 12 CO 00 00 and the denominator is Hex 00 04 00 00, giving a
rational number of Hex 04 B or 1200 decimal. This means that there are 1200
pixels per resolution unit (see Tag 15) in Y coordinate space.

Tag 14 01 C 00 03 00 00 00 01 00 01 00 00
Planar Configuration, Short Data Type (16-bit unsigned integer), One Data Item
with a value of 1 or Single Image Plane. A Planar Configuration tag is
required for RGB TIFF images.

Tag 15 01 28 00 03 00 00 00 01 00 02 00 00
Resolution Unit, Short Data Type (16-bit unsigned integer), One Data Item with
value of 2. This tag is used by Group 3 2d encoders. The data value is used
with the XResolution (Tag 12) and YResolution (Tag 13) values. A data value of
2 is defined as the resolution in inches, so the resolution is in "pixels per
inch.` If the value was 3, then the resolution is in "pixels per centimeter."
A data value of 1 is uncommon and does not specify an absolute unit of

measurement. A value of 1 is used for images that may have a non-square aspect
ratio, but no meaningful absolute dimensions. The drawback of ResolutionUnit=1

10

is that different applications will import the image at different sizes. Even
if the decision is quite arbitrary, it might be better to use dots (pixels) per
inch or dots (pixels) per centimeter, and pick XResolution and YResolution such
that the aspect ratio is correct.

Following the fifteen tags identified, the next four bytes specify the offset to the next IFD
(if one exists). In the case of the data in Figure 4.18, the value of this offset is zero
because there is no other TED. Bytes that follow the IFDs contain data pointed to by 1D
tags and may contain data too large to fit within the 12-byte IFD Tag size limitation.
This data appears at the end of test2.tif (Figure 3.2) between offsets OB7272 and OB728F
as illustrated by the bold case: hexadecimal values in Figure 4.19.

Offset Hexadecimal Data ASCII Data
000B7270: 00 00 00 08 00 08 00 08 57 41 4E 47 5A 02 00 00 a a WANGZM
000B7280: 12 C0 00 00 00 04 00 00 12 CO 00 00 00 04 00 00 IL + XL +

Figure 4.19: Hex Dump of data following the Image File Directory (IFD) from test2.tif

By further examining the structure of the IFD tags, we can examine this additional
information. The likely candidate tag that would point to data beyond its 12-byte
limitation is Tag 6: the Image Description

Tag 6 01 OE 00 02 00 00 00 07 00 OB 72 78

Image Description runs from oo OB 72 7 8

The first two bytes of any tag identify the tag type. In this case o OE tells us this tag is
the image description. The next two bytes contain the second field of the tag structure,
which identify the data type of the tag contents. In this case oo 02 indicates the image
description information is in ASCII format. The next four bytes (oo 00 00 07) specify
the number of items in the tag data; in this case there are seven items. The remaining
four bytes specify the offset where the data is located within the file: oo OB 72 78 to 00

OB 72 7E which contains the bytes to represent the following ASCII string: WANGZG.

The bytes between offset 08 and offset OB71BO contain the image raster data. These are
the bytes that make up the pixels we see on the screen when the image is displayed. The
color channels in the TIFF file are organized as Red Green Blue (RGB).

Let us revisit the first part of image test2.tif (see Figure 3.2) to describe some of the
methods employed for steganalysis (See Figure 4.20).

OFFSET Hexadecimal Data ASCII Data
00000000: 4D 4D 00 2A 00 OB 71 B8 6F 67 57 53 4F 3F 5B 5B M * qlogWSO?[[
00000010: 4B 47 3B 37 53 4B 3F 4B 3F 3F 4F 4F 4B 63 5F 5B KG;7SK?K??OOKc_[
00000020: 6B 63 5F 6B 6F 6B 7F 87 83 7F 83 7B 77 7B 7B 77 kc.kokoaXa{w{{w
00000030: 77 6F 73 6F 6B 6B 5B 53 6B 57 53 6F 67 57 67 57 wosokk[SkWSogWgW
00000040: 3B 73 4F 3F 63 57 47 6B 5F 57 77 73 6B 77 6F 67 ;sO?cWGk_Wwskwog
00000050: 8B 87 77 8B 7F 6B 6B 73 5B 7F 67 57 6F 6F 57 6B !qw!Okks[bgWooWk
00000060: 5B 4F 6B 67 5B 8B 97 7F 3F 43 3F 6B 5B 5F 7F 67 (Okg[1~iu?C?k[-0g
00000070: 6B 7F 5B 5B 93 73 47 97 7B 47 6F 6F 4A 6B 67 5E k0[[8sGu{GooJkg^
00000080: 5F 56 52 67 66 6A 5B 4F 56 6B 5F 63 5B 46 5A 6A _VRgfj[OVkc[FZj
00000090: 61 65 49 5D 51 35 39 41 61 60 5C 41 40 3C 35 34 aeIlQ59Aa'\A@<54
OOOOOOAO: 40 3D 38 38 49 3C 39 4D 34 38 49 38 38 3D 3C 38 @=88I<9M48I88=<8
00000030: 45 40 34 45 40 38 45 40 3C 45 44 38 41 3C 38 45 E@4E@8E@<ED8A<8E
OOOOOOCO: 34 34 44

Figure 4.20: Hex Dump and ASCII data of the first 194 bytes of test2.tif from Figure 3.2

11

In our example we will look at the raster data from Figure 4.20 ranging from offset 08 to
C1.

The color channels in the TIFF file are organized as Red Green Blue (RGB). The
orientation of the pixels as they are stored in the file is from the upper left corner to the
lower right corner of the image (see Figure 4.21). Not all image formats share this
property. For example a BMP image will look identical on the screen but is stored quite
differently in the physical file. Pixel data in BMT images are stored within a file with
orientation following from bottom to top.

Figure 4.21: Typical orientation of the pixel storage within a TIFF image. (Revisiting test2.tif from Figure
3.2)

The first pixel in the image test2.tif (Figure 3.2) begins at offset 08 (following the header)
and has the RGB byte values of 6F 67 57. Table 1 represents the hex and binary values
of bytes, from offset 08 to C1, broken into separate bit planes. The table also indicates to
which pixel and color channel a given byte belongs. (The color coding used in this table
will be discussed later).

Table 1: Example of binary values of pixels and color channels of the data from Figure 3.2.

Pixel Channel
R

1 G

B

R

2 G

B

Hex Value
6F

67
57
53
4F
3F

Bit 8

0

0

0

0

0

0

Bit 7
1

1

1

1

1

0

Binary Values
Bit 6 Bit 5 Bit4 Bit 3

1 0 1 1

1 0 0 1

0 1 0 1

0 1 0 0
0 0 1 1

1 1 1 1

Bit 2

1

1

1

1

1

1

Bit 1

1

1

1

1

1

1

12

Binary Values
Channel Hex Value Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

R 5B 0

3 G 5B 0

B 4B 0

R 47 0

4 G 3B 0

B 37 0

R 53 0

5 G 4B 0

B 3F 0

R 4B 0
6 G 3F 0

B 3F 0

R 4F 0

7 G 4F 0
B 4B 0

R 63 0
8 G 5F 0

B 5B 0

R 6B 0

9 G 63 0

B 5F 0

R 6B 0
10 G 6F 0

B 6B 0

R 7F 0
11 G 87 1

B 83 1

R 7F 0

12 G 83 1

B 7B 0

R 77 0

13 G 7B 0

B 7B 0

R 77 0

14 G 77 0

B 6F 0

R 73 0
15 G 6F 0

B 6B 0

R 6B 0

16 G 5B 0

B 53 0

R 6B 0
17 G 57 0

B 53 0
18 R 6F 0

1 0 1 1 0 1 1

1 0 1 1 0 1 1

1 0 0 1 0 1 1

1 0 0 0 1 1 1

0 1 1 1 0 1 1

0 1 1 0 1 1 1

1 0 1 0 0 1 1

1 0 0 1 0 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 1

0 1 1 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 1 1 1

1 0 0 1 1 1 1

1 0 0 1 0 1 1

1 1 0 0 0 1 1

1 0 1 1 1 1 1

1 0 1 1 0 1 1

1 1 0 1 0 1 1

1 1 0 0 0 1 1

1 0 1 1 1 1 1

1 1 0 1 0 1 1

1 1 0 1 1 1 1

1 1 0 1 0 1 1

1 1 1 1 1 1 1

0 0 0 0 1 1 10 0 0 0 0 1 1
1 1 1 1 1 1 1

0 0 0 0 0 1 1
1 1 1 1 0 1 1

1 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 1 0 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 1 1 0 0 1 1

1 1 0 1 1 1 1

1 1 0 1 0 1 1

1 1 0 1 0 1 1

1 0 1 1 0 1 1

1 0 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 1

1 0 1 0 0 1 1

1 1 0 1 1 1 1

13

Pixel

Binary Values
Pixel Channel Hex Value Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

G 67 0 1 1 0 0 1 1 1

B 57 0 1 0 1 0 1 1 1

R 67 0 1 1 0 0 1 1 1

19 G 57 0 1 0 1 0 1 1 1

B 3B 0 0 1 1 1 0 1 1

R 73 0 1 1 1 0 0 1 1

20 G 4F 0 1 0 0 1 1 1 1

B 3F 0 0 1 1 1 1 1 1

R 63 0 1 1 0 0 0 1 1

21 G 57 0 1 0 1 0 1 1 1

B 47 0 1 0 0 0 1 1 1

R 6B 0 1 1 0 1 0 1 1

22 G 5F 0 1 0 1 1 1 1 1

B 57 0 1 0 1 0 1 1 1

R 77 0 1 1 1 0 1 1 1

23 G 73 0 1 1 1 0 0 1 1

B 6B 0 1 1 0 1 0 1 1

R 77 0 1 1 1 0 1 1 1

24 G 6F 0 1 1 0 1 1 1 1

B 67 0 1 1 0 0 1 1 1

R 8B 1 0 0 0 1 0 1 1

25 G 87 1 0 0 0 0 1 1 1

B 77 0 1 1 1 0 1 1 1

R 8B 1 0 0 0 1 0 1 1

26 G 7F 0 1 1 1 1 1 1 1

B 6B 0 1 1 0 1 0 1 1

R 6B 0 1 1 0 1 0 1 1

27 G 73 0 1 1 1 0 0 1 1

B 5B 0 1 0 1 1 0 1 1

R 7F 0 1 1 1 1 1 1 1

28 G 67 0 1 1 0 0 1 1 1

B 57 0 1 0 1 0 1 1 1

R 6F 0 1 1 0 1 1 1 1

29 G 6F 0 1 1 0 1 1 1 1

B 57 0 1 0 1 0 1 1 1

R 6B 0 1 1 0 1 0 1 1

30 G 5B 0 1 0 1 1 0 1 1

B 4F 0 1 0 0 1 1 1 1

R 6B 0 1 1 0 1 0 1 1

31 G 67 0 1 1 0 0 1 1 1

B 5B 0 1 0 1 1 0 1 1

R 8B 1 0 0 0 1 0 1 1

32 G 97 1 0 0 1 0 1 1 1

B 7F 0 1 1 1 1 1 1 1

33 R 3F 0 0 1 1 1 1 1 1

G 43 0 1 0 0 0 0 1 1

14

Binary Values
Channel Hex Value Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

B 3F

R 6B
34 G 5B

B 5F

R 7F

35 G 67

B 6B

R 7F
36 G 5B

B 5B

R 93
37 G 73

B 47

R 97
38 G 7B

B 47

R 6F

39 G 6F

B 4A

R 6B
40 G 67

B 5E

R 5F
41 G 56

B 52

R 67
42 G 66

B 6A

R 5B
43 G 4F

B 56

R 6B

44 G 5F

B 63

R 5B
45 G 46

B 5A

R 6A
46 G 61

B 65

R 49
47 G 5D

B 51

R 35
48 G 39

B 41

0 0

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

1 0

0 1

0 1

1 0

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 0

0 0

0 1

1 1 1 1 1 1

1 0 1 0 1 1

0 1 1 0 1 1

0 1 1 1 1 1

1 1 1 1 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 1 1 1 1

0 1 1 0 1 1

0 1 1 0 1 1

0 1 0 0 1 1

1 1 0 0 1 1

0 0 0 1 1 1

0 1 0 1 1 1

1 1 1 0 1 1

0 0 0 1 1 1

1 0 1 1 1 1

1 0 1 1 1 1

0 0 1 0 1 0

1 0 1 0 1 1

1 0 0 1 1 1

0 1 1 1 1 0

0 1 1 1 1 1

0 1 0 1 1 0

0 1 0 0 1 0

1 0 0 1 1 1

1 0 0 1 1 0

1 0 1 0 1 0

0 1 1 0 1 1

0 0 1 1 1 1

0 1 0 1 1 0

1 0 1 0 1 1

0 1 1 1 1 1

1 0 0 0 1 1

0 1 1 0 1 1

0 0 0 1 1 0
0 1 1 0 1 0

1 0 1 0 1 0

1 0 0 0 0 1
1 0 0 1 0 1

0 0 1 0 0 1
0 1 1 1 0 1

0 1 0 0 0 1
1 1 0 1 0 1

1 1 1 0 0 1

0 0 0 0 0 1

15

Pixel

Binary Values
Pixel Channel Hex Value Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

R 61 0 1 1 0 0 0 0 1

49 G 60 0 1 1 0 0 0 0 0

B 5C 0 1 0 1 1 1 0 0

R 41 0 1 0 0 0 0 0 1

50 G 40 0 1 0 0 0 0 0 0
B 3C 0 0 1 1 1 1 0 0

R 35 0 0 1 1 0 1 0 1
51 G 34 0 0 1 1 0 1 0 0

B 40 0 1 0 0 0 0 0 0

R 3D 0 0 1 1 1 1 0 1

52 G 38 0 0 1 1 1 0 0 0

B 38 0 0 1 1 1 0 0 0

R 49 0 1 0 0 1 0 0 1

53 G 3C 0 0 1 1 1 1 0 0

B 39 0 0 1 1 1 0 0 1

R 4D 0 1 0 0 1 1 0 1

54 G 34 0 0 1 1 0 1 0 0

B 38 0 0 1 1 1 0 0 0

R 49 0 1 0 0 1 0 0 1

55 G 38 0 0 1 1 1 0 0 0

B 38 0 0 1 1 1 0 0 0

R 3D 0 0 1 1 1 1 0 1

56 G 3C 0 0 1 1 1 1 0 0

B 38 0 0 1 1 1 0 0 0

R 45 0 1 0 0 0 1 0 1

57 G 40 0 1 0 0 0 0 0 0

B 34 0 0 1 1 0 1 0 0

R 45 0 1 0 0 0 1 0 1

58 G 40 0 1 0 0 0 0 0 0

B 38 0 0 1 1 1 0 0 0

R 45 0 1 0 0 0 1 0 1

59 G 40 0 1 0 0 0 0 0 0

B 3C 0 0 1 1 1 1 0 0

R 45 0 1 0 0 0 1 0 1

60 G 44 0 1 0 0 0 1 0 0

B 38 0 0 1 1 1 0 0 0

R 41 0 1 0 0 0 0 0 1

61 G 3C 0 0 1 1 1 1 0 0

B 38 0 0 1 1 1 0 0 0

R 45 0 1 0 0 0 1 0 1

62 G 34 0 0 1 1 0 1 0 0

B 34 0 0 1 1 0 1 0 0

Our main goal is to determine whether a given image contains embedded information
and, if it does, to possibly extract that information. If we assume that information is

16

hidden in the pixel data (the spatial domain) and not in some transform coefficients (the
frequency domain), then we are interested in analyzing a subset of the pixel data. The
subset of interest is that which contains the hidden information. One of the most
common subsets used in hiding techniques, as discussed above, is LSB substitution. The
LSBs (the higher order the bit used, the easier the detection is) will be overwritten with
the hidden information using this particular hiding technique.

Example---Pixel Walk LSB Insertion Technique:

We use as a detailed example yet another method of LSB steganography. This method
only works for color images. We use this example in detail to discuss how
steganography might be detected. (Note that the Kurak-McHugh method swaps entire bit
planes of the embedded image with the cover image and hence is trivial to detect --- we
will come back to this later.) The pixel walk LSB insertion technique is a cross between
the Kurak-McHugh method and the NRL method. The information that is to be hidden in
the image can be separated into a stream of individual bits. The simplest pixel walk LSB
insertion technique hides the information in the pixel data as follows: one bit from the
stream is inserted into the LSB of the red channel of the first pixel, replacing the original
value but changing the byte value by no more than 1. The next bit from the stream is
written to the LSB of the green channel of the first pixel. This is followed by writing the
next bit from the stream to the blue channel of the first pixel, which is then followed by
moving on to the next pixel and repeating the process until the bit stream is empty.
Figure 4.22 provides an illustration of LSB encoding of the binary value for the letter H
in the LSBs of three pixels.

H
|0 1 0 0 10|00

Pixel 1

2100100110 11101001 11001000
ti -0-:f0 Pixel 2 {

00100110 001001 1 1 1 1 1 01 000

*;, %s_~Pxel 3
1 1 001000 1 1 001000 1 1 1 01 001

Figure 4.22: Encoding the binary value for 'H' into the LSBs of three pixels.

17

Let us further describe some concepts used in selecting the subset of pixel data of
interest. Offset describes how many bytes to ignore from the start of pixel data before
beginning the process. If offset=2, then we ignore the first two bytes of pixel data and
begin the process on the third byte (the B byte of pixel 1). Skip describes how many
bytes to ignore (or skip) between bytes of interest. If offset=1 and skip=1, then we start
the process on the second byte (G byte of pixel 1), ignore the third byte, process the
fourth byte (R byte of pixel 2), ignore the fifth, and so on to the end of pixel data
following this same pattern. We also use the term bit plane or bit level to describe which
bit to take from every byte of interest. For instance, if offset=O, skip=2, and bit level=l,
then we start on the first byte and process the first bit of every third byte. This is
equivalent to saying that we will take the LSB of every byte in the red channel of the
image.

The following four color-coded examples illustrate the terms offset, skip, and bit level by
showing how the terms are used in practice. By comparing the values shown below to
their representation in Table 1, the meaning of each term should become clear.

Offset = 0, skip = 0, bit level = 1. (All LSBs)

Offset = 0, skip = 2, bit level = 3. (All red 3rd order bits)

Offset = 1, skip = 2, bit level = 5. (All green 5t"' order bits)

Offset = 2, skip = 2, bit level = 7. (All blue 7 th order bits)

If we were going to analyze all the LSBs of an image, then we would analyze the subset
of pixel data with offset=O, skip=O, and bit level=l, which corresponds to the orange-
coded bits in the pixel data in the above table. That subset should contain all hidden
information that was embedded in the image in the pixel walk manner described above.
After the subset has been obtained it is just a series of bits that must be treated further to
arrive at the original information as it was before it was hidden in the image. If we
assume the original information is a series of bytes and that the bits were hidden from
most-significant-bit to least-significant-bit, then we simply divide the captured bits into a
series of consecutive groups of eight bits, allowing the first bit in each group to be the
most significant bit. We then arrive at a series of bytes that is identical to the original
information before it was hidden. This process is described below.

The simplest pixel walk LSB insertion technique hides one bit in the LSB of every byte
of pixel data, starting at the first pixel of an image and continuing until the end of the data
is reached. In the example from Table 1 above is from the image data for test2.fig
(Figure 3.2). The bits of interest (the LSBs in the target image) are those that appear in
orange. Here they are as a subset, appearing in consecutive order:

l11lll111lll1Il111111 III 11111111llll1llllllll11lllllllllll
11111111111111111111111111 11111111111111111011010010011011110001111l111
100100100100101100100100100100100100100100...

Now we divide this series into 8-bit groups that we will treat as bytes:

11111111 11111111 I11 1111I11 11111111 1 11111111 11111111

11111111 1111 1111 lI 11 1111111 111111 11111111 11110110 10010011
01111000 1111I11 1001001001001011 00]0000100l001000100100 00...

18

As bytes, we now have a stream of data with hex values FF FF FF FF FF FF FF FF 1FF
FF FF FF FF FF F6 93 78 FF 92 4B 24 92 49 ...

Now the task becomes one of discerning meaning. From what has been shown so far it is
not clear whether this data means anything. It certainly does not appear to be ASCII text
as most of the values do not fall within the ASCII range (standard ASCII characters have
the higher order bit set to zero). However, it does not appear random either because of
the great repetition of values at the start of the data. Even the casual observer would
wonder why there are so many consecutive ones. But it is not uncommon for an image to
have substantial repetition of consecutive color values. However, a look at the original
color values from which this subset was taken shows that not to be the case: the color
values are quite varied. Instead, examination of this subset seems to indicate deliberate
placement of odd values instead of even values at the start of image data. There is no
guarantee yet that this is an indication of information hiding, but it is unlikely that this
pattern is natural. Therefore the pattern of bits raises suspicion and this image becomes
suspect. We used the pixel walk LSB insertion method as an illustrative example. As it
turns out, Figure 3.2 is a stego image.6 CSIS was not told this ahead of time. The
steganographic method used was Kurak-McHugh, where the 2-LSBs of testl.tif
replaced the 2-LSBs of the cover image embedded image (an image identical to test2.tif
in the six high order bits) to form the stego image test2.tif. Therefore, the above
steganalysis detected that the least bit plane had been manipulated. Of course other
similar tests can determine more.

Methods Employed for Image Analysis

The following provides explanation of the methods we used in investigating the NRL test
images:

Observing Histogram Anomalies: As a crude first step at analyzing a given file, we
may use this technique to get a statistical illustration of a file's distribution of data. For
every byte in a file, we enter the byte value (from 0 to 255) into a histogram. When
complete, the frequency of occurrence of each value is known. By examining this
histogram, statistical anomalies or trends may be identified. This evaluation may also
suggest an appropriate set of more definitive follow up analysis and provides input for
other tests.

Image Bit-Plane Separation: The idea behind this technique is that hiding methods
embed information in only a subset of available data. In images, one potential subset is a
single bit plane in the pixel data (e.g., using only the 2 nd order bit in every byte). This
analytical technique involves separating the image into planes and relying on the HVS to
detect patterns when viewing a representation of a single plane. We produce a new
image that reduces the original image to only one of its bit planes. First, a bit level is
selected so that only one bit in every byte is used. If the selected bit in the original byte
is a 0, the byte value in the new image will be a 0. If the selected bit in the original byte
is a 1, the byte value in the new image will be 255. This makes patterns more visible.

6 testl.tif and test2.tif were sent by NRL to CSIS to test the testers!

19

The output can be examined visually to determine if lower bit planes correlate with upper
bit planes, or if lower bit planes contain some uncorrelated pattern that may indicate
embedded information in the lower bit levels.

Data Subset Reconstruction: The goal of this process is to select a subset of data within
a suspect file and then to reconstruct the original hidden data from this subset. Of course,
we will only succeed if we select the exact subset in which information was embedded
because the entire subset of data is used in the reconstruction. The output of this process
is a new file containing a concatenation of the bits contained in the extracted subset. In
extracting the subset, we select up to eight bit levels, although if all eight were selected
the result would be an identical byte-for-byte copy of the original file. It is more
practical to select only the bits where information is likely to have been hidden. (Using
high order bits is a sure way of being detected.) We may also use a byte offset from the
start of the original file to avoid extracting bits from the file header in file types that have
headers where information is unlikely to be hidden. If, for example, the lower two bits of
every byte were used to store hidden information, then we could select these two bit
levels and then proceed through the original file byte by byte, extracting only the lower
two bits from each original byte and placing them in a new byte. Each new byte would
be constructed from four original bytes using only the two lower bits from each byte.
The new file would be created by concatenation of these new bytes. If the information
was embedded in sequence without further encryption, then this technique may extract
the embedded message.

Detection of General LSB Manipulation: When we process an image file with the
general LSB detection technique, we skip over any file header information and begin
loading values into a histogram after entering the pixel data. For every pixel, the red,
green, and blue channel values are summed. The value of the sum modulo 256 (resultant
range 0 to 255) is entered into the histogram. When all pixels have been processed in this
way, the values in the histogram are treated as observations in a standard chi-squared (X2)
test. The histogram is broken into 128 pairs of adjacent odd and even values, with each
pair referred to as a pair of values (POV). The first POV contains histogram elements 0
and 1, and the 128th POV contains histogram elements 254 and 255. Overall, the values
within individual POVs are expected to be different in images that do not have
manipulated LSBs (i.e., do not have information hidden in their LSBs). If, however, the
POVs in the histogram are significantly similar, the image is suspected to have been
steganographically altered. This technique is still experimental but its reliability remains
promising.

Detection of Fixed-Pattern LSB Manipulation: This technique differs from the general
LSB manipulation detection technique only in the way that it loads the histogram.
Because specific hiding/embedding algorithms change only certain LSBs during the
embedding process, only those byte values are entered into the histogram. For example,
a possible embedding technique might hide a single bit in every third byte of pixel data.
Therefore, the value of every third byte is entered into the histogram for all the image
data. When all pixels have been processed in this way, the values in the histogram are
subjected to a x2 test in exactly the same way as in the general LSB test. Again, overall
similarity of the values within individual POVs sets the level of suspicion, as determined
by the output of the x 2 test.

20

Underlying X2 Test: The x 2 statistical test relies on the idea that manipulation of image
data to hide information will result in a change from uncorrelated pairs of values to
correlated (or similar) pairs of values in the histograms produced as described above.

Other x 2 Testing: Analysis of non-image files can be accomplished with a process
modified from the techniques mentioned above. The most important step is providing for
a way to limit testing to data where information is expected to have been hidden. If we
suspect that only a specific subset of bytes is being used to carry the hidden data, then
only the values in those bytes should be entered into the histogram. Using an offset from
the beginning of the file and allowing for bytes to be skipped within the file makes this
possible.

5 Experimental Results

The analytic tests employed by CSIS upon receipt of the images from NRL were as
follows:

1. Review the distribution of bits in each of the 8 levels of each color plane.

2. Review the statistical properties of the bits in the overall image and then within
the bit planes. Methods include those mentioned above.

These two tests alone will direct the investigators to further actions. These tests can be
used to discover the randomness of data in each of the bit planes. The existence of
random data my lead one to expect encrypted data. Having a high number of unique
colors with respect to the overall size of the images may be the result of embedded
information. Also having a large number of colors differing by one bit per color channel
may be the result of least significant bit (LSB) manipulation to hide data.

The images in Figure 5.23a,...,h show the eight bit planes of testl.tif (see Figure 3.1) and
the images in Figure 5.24a,...h show the eight bit planes from test2.tif (see Figure 3.2).
The colors of each level are enhanced for better observation. We can clearly see that the
upper two bit planes (Figure 5.23g and h) are embedded into the lowest two bits of the
image test2.tif (Figure 5.24g and h). This can also be detected by a statistical test such as
the discrete Laplacian [5].

21

i-% k
(f)Bitplane6

All.

ne 7 (h) Bit plane 8

Figure 5.23: Eight bit planes of testl.tif

22

(g) Bit plane 7

Figure 5.24: Eight bit planes from test2.tif

23

(h) Bit plane 8

Running further experiments in measuring the relationship between colors and near
pixels, CSIS found that the testl.tif (Figure 3.1) image seems to have been processed
using a steganography tool that employs a LSB embedding technique. (In fact it was
processed using the NRL method but we are suspicious that this was a false positive, with
respect to the NRL method, perhaps due to some manipulation prior to NRL encoding
any message. This suspicion is given weight due to the fact that CSIS could not detect
the NRL method in any of the other test images.) We have not identified the tool, but the
pattern is consistent with techniques similar to S-Tools when processing 24-bit images. It
is possible that a 24-bit BMP file can be processed with a steganography tool and then
converted to a lossless format such as the 24-bit TIFF files provided by NRL.

According to CSIS the images from Figure 3.1 and Figure 3.2 used trivial and easily
detectable methods of data encoding (Figure 3.1 had no steganography used upon it,
whereas Figure 3.2 results from the Kurak-McHugh method. Therefore the result for
Figure 3.1 was a false positive.) CSIS detected no steganography, using their various
statistical methods for Figure 3.3 through Figure 3.16, with the exception of Figure 3.15.
When one views Figure 3.15 in its normal size one can easily see that something is amiss.
That is there are bright spots in it. This is because instead of just modifying the R byte we
modified all three colors to have the same value as the R byte, and thus the
steganography becomes obvious (one should not even call it steganography in that case).
If R is a high value, and all three colors are set to the same value the pixel then appears as
a bright spot. This is why we only modify the R byte.

The tables below describe the various test images (#characters is the size of the
embedded message):
Image TIFF Size Detect Technique #Characters
testl.tif color 500x500 ? NRL method 99
test2.tif color 500x500 Yes KurakMcHugh 2LSB-image
test3.tif color 500x500 No none none
test4.tif color 500x500 No NRL method 64
test5.tif greyscale 500x500 No none none
test6.tif color 500x500 No NRL method 208
test7.tif greyscale 500x500 No NRL method 95
test8.tif greyscale 792x528 No none none
test9.tif greyscale 500x500 No none none
testlO.tif greyscale 500x500 No NRL method 74
test 1 tif greyscale 720x576 No none none

testl 2.tif greyscale 776x552 No none none
testl3.tif color 500x500 No none none
test14.tif greyscale 500x500 No NRL method 6
testl5.tif color 576x720 HVS modified NRL 85
testl6.tif greyscale 500x500 No NRL method 53

24

6 Conclusion

The statistical methods employed by CSIS cannot detect the NRL method. This is not
surprising. Statistical methods are excellent at detecting significant differences. Statistical
tests fail (in all scientific/engineering fields) to detect small changes that are
indistinguishable from noise. The NRL method adds the embedded message in as what
passes for noise. The purpose of these statistical tests was to prove our hypothesis, and
these tests were extremely worthwhile.

Stego channels share a common theme with covert channels---if what you are attempting
to steganographically/covertly embed/transmit is "small," you can get away with it [4].
However, recent work by Fridrich, Goljan and Du demonstrate how single bit changes
introduced to images that were originally stored as JPEG files could be detected [2].
This technique does not employ statistical analysis but instead looks for artifacts of JPEG
image compression that survive into the spatial domain when a JPEG is realized as a
bitmapped image. This approach may detect the NRL method; however, their technique
requires strict constraints and would falsely identify slight modifications introduced
accidentally or through normal image processing as being embedded messages. With this
possibility in mind a new stego tool has been developed by NRL and the University of
Florida [6], that should allow modest size embedded messages in either a spatially
realized bitmapped image, or in a JPEG, that would not fall into the detection measures
proposed by Friedrich et al. Only time will tell since it is a continuing game of cat and
mouse.

Acknowledgements

We thank Dominique Nguyen for her assistance.

References:

[1] R. Anderson, "Security Engineering," Wiley, 2001.

[2] J. Fridrich, M. Goljan, & R. Du, "Steganalysis Based on JPEG Compatibility," Proc.
of SPIE Vol. 4518, pp. 275-280, (2001)

[3] C. Kurak and J. McHugh, "A Cautionary Note on Image Downgrading," Proc.
Computer Security Applications Conference, pp. 153-159, 1992.

[4] .S. Moskowitz and M. Kang, "Covert Channels Here to Stay?," Proc. COMPASS
1994.

[5] I.S. Moskowitz, L. Chang, & R.E. Newman, "Capacity is the Wrong Paradigm," (to
appear) Proc. NSPW 2002.

[6] R.E. Newman, I.S. Moskowitz, & L. Chang, "A Steganographic Embedding
Undetectable by JPEG Compatibility Steganalysis," (preprint) 2002.

25

